
Combinatorics, 2016 Fall, USTC

Week 8, October 25 and 27

1 The second proof of Cayley’s formula

Definition 1. A digraph D = (V,A) consists of a vertex set V and an arc

set A where A ⊆ {(i, j) : i, j ∈ V }

Let D = {all digraphs on [n] s.t. each vertex has exactly one arc going

out, i.e. the out-degree is 1}, where loops are allowed.

Fact: There exists a bijection between D and F1 = { all mappings f : [n]→

[n]}.

Proof. For a digraph D ∈ D , we can define a mapping f1 : [n] → [n] s.t. if

i→ j is the unique arc going out of i, then f(i) = j.

The other direction is also easy to see.

In particular, |D | = |F1| = nn.

Given a spanning tree of Kn, we choose 2 special vertices (one marked

by a circle and the other marked by a square). We call such a subject (the

spanning tree with 2 special vertices) as a vertebrate.
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Let V = { all vertebrate on [n] }. Clearly, |V | = ST (Kn)n
2. So to get

the Cayley’s formula, it suffices to show |V | = nn.

Lemma 2. There exists a bijection between V and D .

Consider w ∈ V , let the unique path P of w between the 2 special vertices

© and � be the “chord" of w. So 8 → 4 → 14 → 9 → 3 → 7 → 15 is the

chord of the w in the figure.

We then define a digraph D1 on V (P ) as following:

8 4 14 9 3 7 15

↑ ↑ ↑ ↑ ↑ ↑ ↑

3 4 7 8 9 14 15

Having the above two rows, the arcs of D1 are from the vertices in the 2nd

row to the one above it. Thus, every vertex in D1 has exactly one edge going

out and one edge going in.

Exercise. Then D1 consists of vertices disjoint cycle. (Possibly containing

loops and 2-cycles.)

Next, we extend D1 to a digraph D on [n], by following:

(1) We go back to the vertebrate W and remain all edges of P .

(2) Then W − E(P ) consists of components, each having one vertex from

V (P ). We direct the edges of the components such that they point to

the unique vertex of the component contained in V (P ).

(3) These arcs product in (2), together with the arcs of D1, define a new

graph D on [n]. This should be easy to see that D ∈ D .
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So we just show that there exists a mapping ϕ : V → D , by defining

ϕ(w) = D, w ∈ V . We still show that ϕ is a bijection.

Step 1 Need to define ϕ−1 : D → V s.t. ϕ−1 · ϕ = Id.

How to define ϕ−1? For each d ∈ D , for the vertices of D belonging to

a directed cycle, there is a national way to define the "chord".

3 4 7 8 9 14 15

↓ ↓ ↓ ↓ ↓ ↓ ↓

8 4 14 9 3 7 15

And the remaining vertices give rise to other edges of the corresponding

vertebrate w.

Step 2 ∀D ∈ D , ∃w ∈ V s.t. ϕ(w) = D.

Combining step 1 and 2, we see ϕ is a bijection.

2 The third proof of Cayley’s formula (using

Linear Algebra)

Definition 3. For a graph G in [n], define the Laplace matrix Q = (qij)n×n

of G as follows:

qii = dG(i), i ∈ [n]

qij =

−1, if ij ∈ E(G)0, otherwise for i 6= j.
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Note that the sum of each row/column is 0.

Also, Kn has the Laplace matrix

A =



n− 1 −1 ... −1 −1

−1 n− 1 ... −1 −1

... ... ... ... ...

−1 −1 −1 n− 1 −1

−1 −1 −1 −1 n− 1


n×n

.

Exercise. det(A11) =?

For an n× n matrix Q, let Qij be the (n− 1)× (n− 1) matrix obtained

from Q by deleting the ith row and jth column.

Theorem 4. ∀ graph G, ST (G) = det(Q11).

In fact, we will show that the statement also holds for multigraphs.

Definition 5. A multigraph is a graph where we allow multiple edges between

two vertices (but no loops).

Example.

Then ST (G) = 6.

For multigraph G, we can define laplace matrix similarly: qii = dG(i),

qij = −m, if i 6= j and ∃ m edges between i and j.
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Theorem 6. For any multigraph G (which has no loops), ST (G) = det(Q11),

where Qij is the (n− 1)× (n− 1) matrix obtained from the laplace matrix Q

of G by deleting the ith row and jth column.

Proof. By induction on the number of edges of G.

Base case, say e(G) = 1, which is trivial.

Now consider a multigraph G and assume this holds for any multigraph

with less than e(G)− 1 edges.

=⇒ Q =



5 −3 −1 −1 0

−3 5 0 −2 −1

−1 0 2 −1 0

−1 −2 −1 4 0

0 −1 0 0 1


Definition 7. Let e be a fixed edge of G.

G− e = the multigraph obtained from G by deleting the edge e.

G : e = the multigraph obtained from G by constructing the edge e, i.e.

merging the two endpoints of e into a new vertex.

By doing this,we may introduce new multiple edges. For example, fix

e = 12, then for the G above,

5



Let Q′ and Q′′ be the laplace matrixes of G− e and G : e respectively. So

Q′ =



4 −2 −1 −1 0

−2 5 0 −2 −1

−1 0 2 −1 0

−1 −2 −1 4 0

0 −1 0 0 1


implying that

Q′11 = Q11 −


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Let Q11,22 be the matrix obtained from Q by deleting the first 2 rows and

the first 2 columns. Then Q′′11 = Q11,22.

Claim 1. det(Q′11) + det(Q′′11) = det(Q11).

Proof. Obviously.

Claim 2. ST (G) = ST (G− e) + ST (G : e).

Proof. We divide the spanning trees of G into two classes:
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- The 1st class contains those spanning trees of G NOT containing e,

which are exactly ST (G− e).

- The 2nd class contains those spanning trees of G containing e. And

we see that the trees in the 2nd class are in a one-to-one correspondence

with the spanning trees of G : e.

By induction, ST (G− e) = det(Q′11), ST (G : e) = det(Q′′11).

By Claim 1 and 2, ST (G) = det(Q11).

Proof of Cayley’s Formula.

Proof. Recall that the laplace matrix of Kn:

Q =


n− 1 −1 · · · −1

−1 n− 1 · · · −1
...

... . . . ...

−1 −1 · · · n− 1


Therefore ST (G) = det(Q11) = nn−2.

3 Intersecting Family

Definition 8. A family F ⊂ 2[n] is intersecting if for any A,B ∈ F , |A∩B| ≥

1.

Fact: For any intersecting family F ⊂ 2[n], we have |F| ≤ 2n−1.
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Proof. Consider all pairs {A,Ac}, ∀A ⊂ [n]. Note that there are exactly 2n−1

such pairs, and F can have at most 1 subset from every pairs. This proves

F ≤ 2n−1.

Tight:

• F = {A ⊂ [n] : 1 ∈ A},

• For n odd,F = {A ∈ [n] : |A| > n
2
}.

A harder problem:

What is the largest intersecting family F ⊂
(
[n]
k

)
?

e.g.: F = {A ∈
(
[n]
k

)
: 1 ∈ A} is such an example.

Theorem 9 (Erdős-Ko-Rado’s Theorem). For n ≥ 2k, the largest intersect-

ing family F ⊂
(
[n]
k

)
has size

(
n−1
k−1

)
.

Moreover, if n>2k, then the largest intersecting family F ⊂
(
[n]
k

)
must be:

F = {A ∈
(
[n]
k

)
: i ∈ A} for some i ∈ [n].

Proof. Take a cyclic permutation π = (a1, a2, ..., an) of [n]. Note that there

are (n− 1)! cyclic permutations of [n] in total.

Let Fπ = {A ∈ F , A appears as k consecutive numbers in the circuit of

π.}

Claim: For each cyclic permutation π, assume n ≥ 2k, then |Fπ| ≤ k.

Proof of Claim. Pick A ∈ Fπ, say A = {a1, a2, ..., ak}. We call the edges

ana1, akak+1 as the boundary edges of A, and the edges a1a2, a2a3, ..., ak−1ak

as the inner-edges of A. We observe that for any distinct A,B ∈ Fπ, the

boundary-edges of A and B are distinct. For any B ∈ Fπ−{A}, as A∩B 6= ∅,
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we see that one of the boundary-edges of B must be an inner-edge of A. But

A has k− 1 inner-edges, so we see that there are at most k− 1 many subsets

in Fπ − {A}. so |Fπ| ≤ k.

Next we do a double-counting.

Let N = #pairs (π,A), where π is a cyclic permutation of [n], and A ∈

Fπ.

By Claim, N =
∑

π |Fπ| ≤ k(n− 1)!.

Fix A, how many cyclic π s.t. A ∈ Fπ?

The answer is k!(n− k)!.

So #cyclic permutations π s.t. π contains the elements of A as k consec-

utive numbers is k!(n− k)!.

So k(n− 1)! ≥ N =
∑

A∈F k!(n− k)! = |F|k!(n− k)!.

=⇒ |F| ≤ k · (n− 1)!

k!(n− k)!
=

(
n− 1

k − 1

)
.
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