Week 8, October 25 and 27

1 The second proof of Cayley's formula

Definition 1. A digraph $D=(V, A)$ consists of a vertex set V and an arc set A where $A \subseteq\{(i, j): i, j \in V\}$

Let $\mathscr{D}=\{$ all digraphs on $[n]$ s.t. each vertex has exactly one arc going out, i.e. the out-degree is 1$\}$, where loops are allowed.

Fact: There exists a bijection between \mathscr{D} and $\mathscr{F}_{1}=\{$ all mappings $f:[n] \rightarrow$ $[n]\}$.

Proof. For a digraph $D \in \mathscr{D}$, we can define a mapping $f_{1}:[n] \rightarrow[n]$ s.t. if $i \rightarrow j$ is the unique arc going out of i, then $f(i)=j$.

The other direction is also easy to see.

In particular, $|\mathscr{D}|=\left|\mathscr{F}_{1}\right|=n^{n}$.
Given a spanning tree of K_{n}, we choose 2 special vertices (one marked by a circle and the other marked by a square). We call such a subject (the spanning tree with 2 special vertices) as a vertebrate.

Let $\mathscr{V}=\{$ all vertebrate on $[\mathrm{n}]\}$. Clearly, $|\mathscr{V}|=S T\left(K_{n}\right) n^{2}$. So to get the Cayley's formula, it suffices to show $|\mathscr{V}|=n^{n}$.

Lemma 2. There exists a bijection between \mathscr{V} and \mathscr{D}.
Consider $w \in \mathscr{V}$, let the unique path P of w between the 2 special vertices \bigcirc and \square be the "chord" of w. So $8 \rightarrow 4 \rightarrow 14 \rightarrow 9 \rightarrow 3 \rightarrow 7 \rightarrow 15$ is the chord of the w in the figure.

We then define a digraph D_{1} on $V(P)$ as following:

8	4	14	9	3	7	15
\uparrow						
3	4	7	8	9	14	15

Having the above two rows, the arcs of D_{1} are from the vertices in the $2 n d$ row to the one above it. Thus, every vertex in D_{1} has exactly one edge going out and one edge going in.

Exercise. Then D_{1} consists of vertices disjoint cycle. (Possibly containing loops and 2-cycles.)

Next, we extend D_{1} to a digraph D on $[n]$, by following:
(1) We go back to the vertebrate W and remain all edges of P.
(2) Then $W-E(P)$ consists of components, each having one vertex from $V(P)$. We direct the edges of the components such that they point to the unique vertex of the component contained in $V(P)$.
(3) These arcs product in (2), together with the arcs of D_{1}, define a new graph D on $[n]$. This should be easy to see that $D \in \mathscr{D}$.

So we just show that there exists a mapping $\varphi: \mathscr{V} \rightarrow \mathscr{D}$, by defining $\varphi(w)=D, w \in \mathscr{V}$. We still show that φ is a bijection.

Step 1 Need to define $\varphi^{-1}: \mathscr{D} \rightarrow \mathscr{V}$ s.t. $\varphi^{-1} \cdot \varphi=I d$.
How to define φ^{-1} ? For each $d \in \mathscr{D}$, for the vertices of D belonging to a directed cycle, there is a national way to define the "chord".

And the remaining vertices give rise to other edges of the corresponding vertebrate w.

Step $2 \forall D \in \mathscr{D}, \exists w \in \mathscr{V}$ s.t. $\varphi(w)=D$.

Combining step 1 and 2 , we see φ is a bijection.

2 The third proof of Cayley's formula (using Linear Algebra)

Definition 3. For a graph G in $[n]$, define the Laplace matrix $Q=\left(q_{i j}\right)_{n \times n}$ of G as follows:

$$
\begin{gathered}
q_{i i}=d_{G}(i), i \in[n] \\
q_{i j}=\left\{\begin{array}{l}
-1, \text { if } i j \in E(G) \\
0, \text { otherwise for } i \neq j
\end{array}\right.
\end{gathered}
$$

Note that the sum of each row/column is 0 .
Also, K_{n} has the Laplace matrix

$$
A=\left(\begin{array}{ccccc}
n-1 & -1 & \ldots & -1 & -1 \\
-1 & n-1 & \ldots & -1 & -1 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-1 & -1 & -1 & n-1 & -1 \\
-1 & -1 & -1 & -1 & n-1
\end{array}\right)_{n \times n}
$$

Exercise. $\operatorname{det}\left(A_{11}\right)=$?
For an $n \times n$ matrix Q, let $Q_{i j}$ be the $(n-1) \times(n-1)$ matrix obtained from Q by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column.

Theorem 4. \forall graph $G, S T(G)=\operatorname{det}\left(Q_{11}\right)$.

In fact, we will show that the statement also holds for multigraphs.

Definition 5. A multigraph is a graph where we allow multiple edges between two vertices (but no loops).

Example.

Then $S T(G)=6$.

For multigraph G, we can define laplace matrix similarly:

$$
\left\{\begin{array}{l}
q_{i i}=d_{G}(i) \\
q_{i j}=-m, \text { if } i \neq j \text { and } \exists m \text { edges between } i \text { and } j .
\end{array}\right.
$$

Theorem 6. For any multigraph G (which has no loops), $S T(G)=\operatorname{det}\left(Q_{11}\right)$, where $Q_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained from the laplace matrix Q of G by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column.

Proof. By induction on the number of edges of G.
Base case, say $e(G)=1$, which is trivial.
Now consider a multigraph G and assume this holds for any multigraph with less than $e(G)-1$ edges.

Definition 7. Let e be a fixed edge of G.
$G-e=$ the multigraph obtained from G by deleting the edge e.
$G: e=$ the multigraph obtained from G by constructing the edge e, i.e. merging the two endpoints of e into a new vertex.

By doing this, we may introduce new multiple edges. For example, fix $e=\overline{12}$, then for the G above,

Let Q^{\prime} and $Q^{\prime \prime}$ be the laplace matrixes of $G-e$ and $G: e$ respectively. So

$$
Q^{\prime}=\left(\begin{array}{ccccc}
4 & -2 & -1 & -1 & 0 \\
-2 & 5 & 0 & -2 & -1 \\
-1 & 0 & 2 & -1 & 0 \\
-1 & -2 & -1 & 4 & 0 \\
0 & -1 & 0 & 0 & 1
\end{array}\right)
$$

implying that

$$
Q_{11}^{\prime}=Q_{11}-\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Let $Q_{11,22}$ be the matrix obtained from Q by deleting the first 2 rows and the first 2 columns. Then $Q_{11}^{\prime \prime}=Q_{11,22}$.

Claim 1. $\operatorname{det}\left(Q_{11}^{\prime}\right)+\operatorname{det}\left(Q_{11}^{\prime \prime}\right)=\operatorname{det}\left(Q_{11}\right)$.

Proof. Obviously.

Claim 2. $S T(G)=S T(G-e)+S T(G: e)$.

Proof. We divide the spanning trees of G into two classes:

- The $1^{\text {st }}$ class contains those spanning trees of G NOT containing e, which are exactly $S T(G-e)$.
- The $2^{\text {nd }}$ class contains those spanning trees of G containing e. And we see that the trees in the $2^{\text {nd }}$ class are in a one-to-one correspondence with the spanning trees of $G: e$.

By induction, $S T(G-e)=\operatorname{det}\left(Q_{11}^{\prime}\right), S T(G: e)=\operatorname{det}\left(Q_{11}^{\prime \prime}\right)$.
By Claim 1 and $2, S T(G)=\operatorname{det}\left(Q_{11}\right)$.

Proof of Cayley's Formula.

Proof. Recall that the laplace matrix of K_{n} :

$$
Q=\left(\begin{array}{cccc}
n-1 & -1 & \cdots & -1 \\
-1 & n-1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & n-1
\end{array}\right)
$$

Therefore $S T(G)=\operatorname{det}\left(Q_{11}\right)=n^{n-2}$.

3 Intersecting Family

Definition 8. A family $\mathcal{F} \subset 2^{[n]}$ is intersecting if for any $A, B \in \mathcal{F},|A \cap B| \geq$ 1.

Fact: For any intersecting family $\mathcal{F} \subset 2^{[n]}$, we have $|\mathcal{F}| \leq 2^{n-1}$.

Proof. Consider all pairs $\left\{A, A^{c}\right\}, \forall A \subset[n]$. Note that there are exactly 2^{n-1} such pairs, and \mathcal{F} can have at most 1 subset from every pairs. This proves $\mathcal{F} \leq 2^{n-1}$.

Tight:

- $\mathcal{F}=\{A \subset[n]: 1 \in A\}$,
- For n odd, $\mathcal{F}=\left\{A \in[n]:|A|>\frac{n}{2}\right\}$.

A harder problem:

What is the largest intersecting family $\mathcal{F} \subset\binom{[n]}{k}$?
e.g.: $\mathcal{F}=\left\{A \in\binom{[n]}{k}: 1 \in A\right\}$ is such an example.

Theorem 9 (Erdős-Ko-Rado's Theorem). For $n \geq 2 k$, the largest intersecting family $\mathcal{F} \subset\binom{[n]}{k}$ has size $\binom{n-1}{k-1}$.

Moreover, if $n>2 k$, then the largest intersecting family $\mathcal{F} \subset\binom{[n]}{k}$ must be: $\mathcal{F}=\left\{A \in\binom{[n]}{k}: i \in A\right\}$ for some $i \in[n]$.

Proof. Take a cyclic permutation $\pi=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $[n]$. Note that there are $(n-1)$! cyclic permutations of $[n]$ in total.

Let $\mathcal{F}_{\pi}=\{A \in \mathcal{F}, A$ appears as k consecutive numbers in the circuit of π.
Claim: For each cyclic permutation π, assume $n \geq 2 k$, then $\left|\mathcal{F}_{\pi}\right| \leq k$.

Proof of Claim. Pick $A \in \mathcal{F}_{\pi}$, say $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. We call the edges $a_{n} a_{1}, a_{k} a_{k+1}$ as the boundary edges of A, and the edges $a_{1} a_{2}, a_{2} a_{3}, \ldots, a_{k-1} a_{k}$ as the inner-edges of A. We observe that for any distinct $A, B \in \mathcal{F}_{\pi}$, the boundary-edges of A and B are distinct. For any $B \in \mathcal{F}_{\pi}-\{A\}$, as $A \cap B \neq \emptyset$,
we see that one of the boundary-edges of B must be an inner-edge of A. But A has $k-1$ inner-edges, so we see that there are at most $k-1$ many subsets in $\mathcal{F}_{\pi}-\{A\}$. so $\left|\mathcal{F}_{\pi}\right| \leq k$.

Next we do a double-counting.
Let $N=$ \#pairs (π, A), where π is a cyclic permutation of $[n]$, and $A \in$ \mathcal{F}_{π}.

By Claim, $N=\sum_{\pi}\left|\mathcal{F}_{\pi}\right| \leq k(n-1)$!.
Fix A, how many cyclic π s.t. $A \in \mathcal{F}_{\pi}$?
The answer is $k!(n-k)$!.
So \#cyclic permutations π s.t. π contains the elements of A as k consecutive numbers is $k!(n-k)$!.

So $k(n-1)!\geq N=\sum_{A \in \mathcal{F}} k!(n-k)!=|\mathcal{F}| k!(n-k)!$.

$$
\Longrightarrow|\mathcal{F}| \leq \frac{k \cdot(n-1)!}{k!(n-k)!}=\binom{n-1}{k-1} .
$$

